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Quantum Technology: The Second Quantum Revolution
JP Dowling &  GJ Milburn, Phil. Transactions of the Royal Soc. of London
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Schrödinger’s Cat and All That



Schrödinger’s Cat Revisited



Quantum Kitty Review

A sealed and insulated box (A) contains a radioactive 
source (B) which has a 50% chance during the course of 
the "experiment" of triggering Geiger counter (C) which 
activates a mechanism (D) causing a hammer to smash a 
flask of prussic acid (E) and killing the cat (F). 

An observer (G) must open the box in order to collapse 
the state vector of the system into one of the two possible 
states. A second observer (H) may be needed to collapse 
the state vector of the larger system containing the first 
observer (G) and the apparatus (A-F). And so on ...



Paradox? What Paradox!?

(1.) The  State of the Cat is “Entangled” with That of the Atom.

(2.)  The Cat is in a Simultaneous Superposition of Dead & Alive.

(3.)  Observers are Required to “Collapse” the Cat to Dead or Alive



Quantum Entanglement

“Quantum entanglement is the characteristic trait of quantum 
mechanics, the one that enforces its entire departure from 
classical lines of thought.” 

— Erwin Schrödinger



Conservation of Classical 
Angular Momentum
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Conservation of Quantum Spin

Entangled

David Bohm

Rod Sterling
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Einstein, Podolsky, Rosen (EPR) Paradox

Albert Einstein Boris Podolsky

“If, without in any way disturbing a system, we can predict with
certainty ... the value of a physical quantity, then there exists an 
element of physical reality corresponding to this physical 
quantity." 

Nathan Rosen



Hidden Variable Theory

+
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Can the Spooky, Action-at-a-distance Predictions  
(Entanglement) of Quantum Mechanics…

+
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…Be Replaced by Some Sort of Local, Statistical, 
Classical (Hidden Variable) Theory?



NO!—Bell’s Inequality

The physical predictions of quantum theory disagree 
with those of any local (classical) hidden-variable theory! 

John Bell



Clauser (1978) & Aspect (1982) Experiments

John Clauser

Alain Aspect
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H = Horizontal Polarization
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Quantum Light—Over the Rainbow



Parametric Downconversion: Type I



Parametric Downconversion: Type I
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Parametric Downconversion: Type I

QuickTime™ and a Sorenson Video decompressor are needed to see this picture.
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Parametric Downconversion: Type II
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QuickTime™ and a Animation decompressor are needed to see this picture.



Putting Entangled Light to Work



Tests of Bell’s Inequalities at Innsbruck

Anton Zeilinger
Alice

Bob

Type II Downcoversion



Quantum Teleportation





Teleportation Experiment at Innsbruck

Bell State Analysis

EPR Source

Experiment



NIST Heralded Photon Absolute Light Source

Output characteristics : 
photon # known
photon timing known
wavelength known
direction known
polarization known Alan Migdall
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Black Box
Generates arbitrary 

Entangled States

QWP
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This setup allows 
measurement of an 
arbitrary polarization 
state in each arm.

Any two-photon 
tomography requires 16 
of these measurements.
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Characterizing Two-Photon Entanglement

Paul Kwiat
U. Illinois
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Bob and “Charly” Share Random Crypto Key

Quantum Cryptography at University of Geneva

System Under Lake Geneva

Nicolas Gisin



New York Times



ORIGIN OF THE LITHO EFFECT 
SHOMI FOR N=2
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The Hong-Ou-Mandel Effect

Leonard Mandel



EASY (BUT USELESS?) FOR N=2
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Quantum Optical Lithography



University of Maryland Experiment



University of Maryland Experiment

Yanhua
Shih
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Displacement Measurements and Gravity Waves

Hans Bachor
Australian National University
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Quantum Clock Synchronization

Entangled Photons Can Synchronize Past the Turbulent Atmosphere!Entangled Photons Can Synchronize Past the Turbulent Atmosphere!

Seth
Lloyd
MIT
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Quantum Computing

Quantum Controlled-NOT Gate 
using and Entangled-Light 
Source, Beam Splitters, and 
Detectors.

Entangled Photons are a Resource for Scalable Quantum Computation!Entangled Photons are a Resource for Scalable Quantum Computation!

E. Knill, R. Laflamme and 
G. Milburn, Nature 409, 46, (2001) 

E. Knill, R. Laflamme and 
G. Milburn, Nature 409, 46, (2001) 

Gerard
Milburn
University
Of
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JPL Quantum Optical Internet Testbed
POC: Jonathan.P.Dowling@jpl.nasa.gov (QCT Group) 

• QCT Group Quantum Optics Lab

• Single Photon Sources and Calibration

• Optical Imaging, Computing, and SATCOM

• QCT Group Quantum Optics Lab

• Single Photon Sources and Calibration

• Optical Imaging, Computing, and SATCOM

Entangled Photons



JPL Single Photon Detector Foundry
POC: Deborah.J.Jackson@jpl.nasa.gov (QCT Group) 

• We propose to develop a US Government single photon detector foundry 
at the Jet Propulsion Laboratory.

• This facility will provide a vertically integrated, completely in-house 
capability to develop, design, fabricate, test, and optically characterize 
ultra-fast, thin-film, superconducting, single-photon detectors.  

• These detectors are targeted for use in wide-bandwidth, optical, quantum 
key distribution (QKD) for the DoD, as well as US intelligence, commercial, 
and academic applications. 

• We propose to develop a US Government single photon detector foundry 
at the Jet Propulsion Laboratory.

• This facility will provide a vertically integrated, completely in-house 
capability to develop, design, fabricate, test, and optically characterize 
ultra-fast, thin-film, superconducting, single-photon detectors.  

• These detectors are targeted for use in wide-bandwidth, optical, quantum 
key distribution (QKD) for the DoD, as well as US intelligence, commercial, 
and academic applications. 
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